FLATIRON

Big Data & Precision Medicine

Amy Abernethy, MD PhD

- FLATIRON HEALTH
- WWW.FLATIRON.COM

4% vs. 96%

Electronic health record adoption in the U.S. has surged since 2001.

90%+ 20**1**5

This enables us to capture data from the 96% of patients not on a clinical trial.

18% 2001

Frustrations faced:

- 1. Clinical data is really messy and unreliable
- 2. Instrumentation data (including genomics) is really "big"
- 3. It's incredibly hard to follow a patient's complete journey
- 4. There is a lack of "real-world" evidence, which makes it difficult to talk with patients about expected outcomes

How can we leverage data in a meaningful way to enhance patient care and learn from their experiences?

Processing the Electronic Health Record

Structured Data Processing

2220	Blood Serum Albumin	g/dL
QD25001600	ALBUMIN/GLOBULIN RATIO QD	(calc)
QD25001400	ALBUMIN QD	g/dL
QD50058600	ALBUMIN	%
QD50055700	ALBUMIN	g/dL
CL3215104	Albumin % (EPR)	%
LC001081	ALBUMIN, SERUM (001081)	g/dL
LC003718	Albumin, U	%
LC001488	Albumin	g/dL
LC133751	Albumin, U	%
CL3215162	Albumin%, Urine	%
CL3215160	Albumin, Urine	mg/24hr
3234	ALBUMIN SS	g/dL
LC133686	Albumin, U	%
QD50060710	MICROALBUMIN	mg/dL
QD50061100	MICROALBUMIN/CREATININE RATIO,	mcg/mg
	RANDOM URINE	creat
QD85991610	ALBUMIN	relative %
50058600	ALBUMIN UPEP RAND	%
CL3210074	ALBUMIN LEVEL	g/dL
QD86008211	ALBUMIN/GLOBULIN RATIO	(calc)
LC149520	Albumin	g/dL
QD45069600	PREALBUMIN	mg/dL
QD900415245	ALBUMIN, SERUM	mg/dl
QD900429745	ALBUMIN	g/dL
CL3215124	Albumin Electrophoresis	g/dL
LC016931	Prealbumin	mg/dL
QD50060900	MICROALBUMIN, 24 HOUR UR	mcg/min
QD85994821	ALBUMIN,SERUM	g/dL
CL3213320	PREALBUMIN	mg/dL
QD85995225	PROTEIN ELECTROPHORESIS	g/dL
	ALBUMIN	

- All terms are mapped to a common vocabulary, standard across all centers
- Matching algorithms can predict matches for ~90% of terms
- Data processing engine transcodes terms in real-time
- Any unmatched term is flagged for clinical review by Flatiron MD/RN

1751-7 Albumin [Mass/volume] in Serum or Plasma

g/dL

Capturing Key Data From Unstructured Notes

Leverage unstructured data processing to drive accuracy and completeness of data elements

- KRAS testing status
- KRAS test result
- Date sample was collected
- Date sample was received in lab
- Date result was provided to physician

Technology leverages people & capabilities

A dataset is an amalgamation of many patient stories

Starts 2L Progresses on Undergoes 1L, tested for therapy, surgery for Tested for PD-L1 and/or deteriorates Diagnosed Develops Starts metastatic EGFR and with Stage early-stage 1L re-tested for and is II NSCLC disease ALK **EGFR** hospitalized Death disease therapy

Structured EMR data

Curating the complete picture

Patient	Demographics	Stage	Diagnosis Date	Biomarkers	Treatment	Response	Hospital admissions	Mortality
А								
В								
С								
D								

Curating the complete picture

Data quality must be a focus

Variable	Structured data only	Flatiron data completeness
Smoking status	0%1	94%
Histology	37%	99%²
Stage	61%	95%
ALK results (of those tested)	9%	100%³
EGFR results (of those tested)	11%	99%³

Site of Met	Inter-abstractor Agreement	Карра
Bone	97%	0.93
Brain	96%	0.91
Liver	92%	0.83
Lung	94%	0.87

1.1M+ Always on Up to date

Distribution of Most Commonly Altered Genes

The Evolving Landscape in Lung Cancer

How can we leverage data to better understand our patient population, monitor changes and document outcomes?

Current NSCLC Cohort
Total Patients: 22,762 (Community: 21,222, Academic: 1,540)
Number of Clinics Represented: 171

3.5% **6.1**%

45%

1.4% — 2⁴

24.5% 687/2807

2nd line+

2.6% 46%

Kaplan-Meier Survival Analysis

How likely are patients to receive KRAS testing?

Metastatic colorectal cancer: KRAS testing rate by year of metastatic diagnosis (evaluated in June 2015)

^{*} Line of treatment is determined at Flatiron through a series of disease-specific business rules based on review of real-world data by oncologists

How likely are patients to receive KRAS testing?

Metastatic colorectal cancer: KRAS testing rate by year of metastatic diagnosis (evaluated in June 2015)

^{*} Line of treatment is determined at Flatiron through a series of disease-specific business rules based on review of real-world data by oncologists

Later lines of therapy are associated with a higher probability of KRAS testing

Use our understanding of patient journeys...

Use our understanding of patient journeys...

Take care!

Addressing questions in precision medicine

How do I manage my lung cancer patient with a KRAS mutation?

What is KRAS?

KRAS in Lung Cancer

KRAS in Non-Small Cell Lung Cancer (NSCLC)

Approximately 15–25% of patients with lung adenocarcinoma have tumor associated *KRAS* mutations. *KRAS* mutations are uncommon in lung squamous cell carcinoma (<u>Brose et al. 2002</u>). In the majority of cases, these mutations are missense mutations which introduce an amino acid substitution at position 12, 13, or 61. The result of these mutations is constitutive activation of *KRAS* signaling pathways.

The role of KRAS as either a prognostic or predictive factor in NSCLC is unknown at this time. Very few prospective randomized trials have been completed using KRAS as a biomarker to stratify therapeutic options in the metastatic setting. Unlike in colon cancer, KRAS mutations have not yet been shown in NSCLC to be negative predictors of benefit to anti-EGFR antibodies. However, KRAS mutations are negative predictors of radiographic response to the EGFR tyrosine kinase inhibitors, erlotinib and gefitinib [for review, see (Riely and Ladanyi 2008; Riely, Marks, and Pao 2009)]. Currently, there are no direct anti-KRAS therapies available.

Contributors: Christine M. Lovly, M.D., Ph.D., Leora Horn, M.D., M.Sc., William Pao, M.D., Ph.D. (through April 2014)

Suggested Citation: Lovly, C., L. Horn, W. Pao. 2015. KRAS in Non-Small Cell Lung Cancer (NSCLC). My Cancer Genome http://www.mycancergenome.org/content/disease/lung-cancer/kras/ (Updated June 18).

Last Updated: June 18, 2015

KRAS is among the most commonly altered gene in our lung cancer cohort, yet the implications of KRAS mutations are not yet understood

Journey of a Patient on Targeted Therapy After NGS

ABOUT THE TEST:

FoundationOne® is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

PATIENT RESULTS

TUMOR TYPE: LUNG ADENOCARCINOMA

Genomic Altera	ations Identified†
<i>KRAS</i> Q61H	
PTEN loss	
CDKN2A/Blos	s

Additional Disease-relevant Genes with No Reportable Alterations Identified †

RET ALK BRAF ERBB2 MET EGFR

¹For a complete list of the genes assayed and performance specifications, please refer to the Appendix *See Appendix for details

THERAPEUTIC IMPLICATIONS

Genomic Alterations Detected	FDA Approved Therapies (in patient's tumor type)	FDA Approved Therapies (in another tumor type)	Potential Clinical Trials
KRAS Q61H	None	Trametinib	Yes, see clinical trials section
<i>PTEN</i> loss	None	Everolimus Temsirolimus	Yes, see clinical trials section
CDKN2A/B loss	None	None	Yes, see clinical trials section

Note: Genomic alterations detected may be associated with activity of certain FDA approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

Based on NGS testing, patient underwent treatment with trametinib in 2L

Journey of a Patient on Targeted Therapy After NGS

Journey of a Patient on Targeted Therapy After NGS

What About Outcomes For Other KRAS+ Patients?

FLATIRON