SPEAK VISUALLY:

HOW TO USE VISUAL COMMUNICATION TO TELL YOUR RESEARCH STORY
AMY BALLIETT
Killer Infographics
CEO & Chief Swiss Army Knife
amy@killerinfographics.com
Our company is 6 years old

We are one of the leading visual communication agencies in the world

Core offerings include static infographics, interactives, and motion graphics
PART 1:
WHAT IS VISUAL COMMUNICATION &
WHY DOES IT MATTER?
VISUAL COMMUNICATION

graphically represents information to efficiently and effectively create meaning.

When necessary, limited text is included to explicate the meaning.
More than 84% of communication will be visual by 2018.
On average, press releases with visuals receive 77% more visitors than those without.
On average, users read just **20%** of the content on a web page with more than 600 words of text.
Visual information gets to the brain

60,000 TIMES FASTER

than text

of information transmitted to the brain is visual
VISUALS COMMUNICATE INFORMATION FASTER THAN WORDS

You could slip, fall, and break your back.
Text paired with images improves comprehension by 89%.
PART 2: QUALITY EXECUTION IS KEY
VISUAL IQ IS RISING FASTER THAN ANY OTHER FORM OF IQ
First impressions are 94% based on design
IT TAKES LESS THAN 50 MILLISECONDS TO FORM A FIRST IMPRESSION
THOUGHTS?
Understanding Google PageRank...

PageRank is a Popularity Contest Like Running for Prom King

PageRank Requires The Right Votes

The Right Votes Lead to Many Followers

How People Vote for You Can Affect Your Overall Score

If You Vote for Me & I Vote for You, Your Votes Cancel Each Other Out

Achieving The Best & Most Votes, Will Lead to Success

Moonwalking: Then and now

With six successful moon landings, the Apollo program captured the world's imagination. By 2020, the Constellation program will try to pick up where Apollo left off if budgetary concerns don't derail it first.
PART 3:
A PROCESS THAT WORKS FOR ANY BUDGET
A Cure in the Lab Is Not Enough

You can help bring research breakthroughs from the bench to the bedside.

Research studies at Seattle Children's
Advances in all areas of science provide exciting developments for healthcare practice. So, how do lightbulbs ideas get explored and reach real people? The research life cycle begins when doctors ask questions about how to improve treatments for their patients. For example, how can cancer treatments cause fewer side effects? Is there a way to safely fix a genetic mutation? Cash flow and people willing to participate are crucial to keep the cycle in motion. Here's how researchers turn possibilities into better realities for patients and their families.

Laboratory Study

In the lab, researchers consider and develop ideas. They:

- Ask a question
- Share thoughts, develop an idea, and get research funding
 - [Visual warning sign]: Research can't begin without funding
 - Test the idea until results are consistent
 - [Visual warning sign]: Funding needed between testing stages

Clinical Research Study Preparation

The preparation period transitions research from the lab to a controlled environment that includes people. Researchers:

- Confirm that lab research answered the study question
- Seek funding:
 - [Grant applications from organizations]
 - [Donations from community members]
 - [Visual warning sign]: Funding needed for clinical study to proceed

Clinical Research Study

Carefully planned studies test whether the new idea actually helps people. Volunteers participate as researchers can identify how well treatments work and that they are safe.

- **Phase 1**
 - Small group of volunteers
 - Examine safety and side effects
 - [Visual warning sign]: People needed for phase to be completed

- **Phase 2**
 - Medium-size group of volunteers
 - [Visual warning sign]: Without enough people, study can't continue
 - Examine effectiveness

- **Phase 3**
 - Large group of volunteers
 - [Visual warning sign]: Without enough people, study can't continue
 - [Visual warning sign]: Funding needed for clinical study to proceed

- **Phase 4**
 - [Visual warning sign]: FDA approval required for phase to proceed
 - [Largest group of people]
 - Examine long-term benefits and risks

Throughout research and healthcare processes, scientists and doctors learn from experiments, discoveries, and care. New questions are generated, which become the topics of new studies.
The Research Life Cycle
for Seattle Children’s

Advances in all areas of science provide exciting developments for healthcare practice. So, how do lightbulb ideas get explored and reach real people? The research life cycle begins when doctors ask questions about how to improve treatments for their patients. For example, how can cancer treatments cause fewer side effects? Is there a way to safely fix a genetic mutation? Cash flow and people willing to participate are crucial to keep the cycle in motion. Here’s how researchers turn possibilities into better realities for patients and their families:

Laboratory Study
In the lab, researchers consider and develop ideas. They:
• Ask a question
 • Share thoughts, develop an idea, and get research funding
 o [Visual warning sign]: Research can’t begin without funding
 o Test the idea until results are consistent
 • [Visual warning sign]: Funding needed between testing stages

Clinical Research Study Preparation
The preparation period transitions research from the lab to a controlled environment that includes people. Researchers:
• Confirm that lab research answered the study question
• Seek funding
 o Grant applications from organizations
 o Donations from community members
 o [Visual warning sign]: Funding needed for clinical study to proceed

Clinical Research Study
Carefully planned studies test whether the new idea actually helps people. Volunteers participate so researchers can identify how well treatments work and that they are safe.
• Phase 1
 o Small group of volunteers
 o Examines safety and side effects
 o [Visual warning sign]: People needed for phase to be completed
• Phase 2
 o Medium-size group of volunteers
 • [Visual warning sign]: Without enough people, study can’t continue
 o Examines effectiveness
• Phase 3
 o Large group of volunteers
 • [Visual warning sign]: Without enough people, study can’t continue
 o Examines effectiveness and consistency
• Phase 4
 o [Visual warning sign]: FDA approval required for phase to proceed
 o Largest group of people
 o Examines long-term benefits and risks

Throughout research and healthcare processes, scientists and doctors learn from experiments, discoveries, and care. New questions are generated, which become the topics of new studies!
How Ideas Turn Into Better Healthcare

1. Laboratory Study
 - In the lab, researchers design and develop a product or service.

2. Funding Needed for Clinical Study to Begin
 - The product/service is tested on a larger group of people to ensure safety and efficacy.

3. Clinical Research Study
 - The product/service is tested in a clinical trial.

While research studies are designed to answer questions, they also generate new questions that spur new rounds of research for scientists and doctors.
FREE EBOOK
VISUAL CAMPAIGNS
FOR BEGINNERS

DOWNLOAD HERE: bit.ly/VizComSIC
AMY BALLIETT
Killer Infographics
CEO & Chief Swiss Army Knife
amy@killerinfographics.com