Tools You Can Use:
Practical Team Science Guidance

Holly J. Falk-Krzesinski, PhD
Vice President, Strategic Alliances, Global Academic Relations

Tools You Can Use in Team Science • HRA Members’ Meeting
April 1, 2016
INTRODUCTION

"Team research, especially interdisciplinary research, is characterized by synergies among experts that can transform both scholars and scholarship“

– John Cacioppo, PhD, the Tiffany and Margaret Blake Distinguished Service Professor in Psychology, The University of Chicago, from the Arete Initiative website http://arete.uchicago.edu/ (2010)
Brief Bio

- **Industry/Research Information/Publishing (3+ yrs)**
 - Vice President, Strategic Alliances, Global Academic Relations, Elsevier

- **Academia/Non-professoriate (20+ yrs)**
 - Adjunct Lecturer, School of Professional Studies, Philanthropy & Nonprofit Program, Northwestern University
 - Director, Office of Research Development
 - Senior Lecturer and Research Assistant Professor, Northwestern University
 - Assistant Chair, Biology and Associate Director, STEM PhD program
 - Undergrad, PhD, Postdoc training

- **Industry/Pharma (2.5 yrs)**
 - Anti-infective research, Abbott Laboratories

- **Nonprofit (7+ yrs)**
 - Editor-in-Chief, AWIS Magazine
 - Founding President, National Organization of Research Development Professionals (NORDP)
Team Science Experience

- Connecting researchers and resources in pursuit of large collaborative projects
- Compiled a 1.9K+ reference Team Science resource library
- Published primary research findings that inform effective collaboration, especially for science teams
- Developed and taught one of the first-ever Team Science graduate courses, co-developed an online Team Science course
- Chaired the Science of Team Science Conference for its first 3 years
- Team science consultant for almost two dozen US universities
- Involved with the US, UK, and Canadian national team science initiatives
What is Team Science?

Team Science

Cross-disciplinary Research + Collaboration
Cross-disciplinarity

- (Uni)Disciplinary research
- Three Cross-disciplinary research orientations
 - Combine or integrate from more than one field
 - Concepts, Methods, and Theories
 - **Multidisciplinary**
 - Independent, Sequential, Divisional
 - Exchange
 - **Interdisciplinary**
 - Joint, Interactive, Partnership
 - Dialogue, Hybridization, Complementary
 - **Transdisciplinary**
 - Integrative, Interdependence, Emergence
 - Reciprocity, Discourse, Share Vocabulary, Extends
Figure 1
Stage Models of Collaboration

<table>
<thead>
<tr>
<th>Coexistence</th>
<th>Communication</th>
<th>Cooperation</th>
<th>Coordination</th>
<th>Coalition</th>
<th>Collaboration</th>
<th>Coadunation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peterson Model (1991)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Levels of Community Linkage Model (Hogue, 1993)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Levels of Integration Model (Gajda, 2004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seven Stage Model</td>
<td></td>
</tr>
</tbody>
</table>

Translating Science to Practice

- There is an increased demand for team science initiatives in academia and by external funding agencies.

- Coordination costs mean that team science takes *more* time, at least proximally; distal payoff in terms of acceleration.

- Imperative that we *understand* the most effective practices for productive cross-disciplinary collaboration and team science.

- Then train individual investigators, institutional leaders, and funders to *employ* them.
TeamScience.net

The Toolbox Project1,2 Collaborative Communication Workshop provides a philosophical yet practical enhancement to cross-disciplinary, collaborative science. Rooted in philosophical analysis, the Toolbox workshop enables investigators, research development professionals, project managers, and collaborators to engage in a structured dialogue about their research assumptions and cross-disciplinary collaboration. This yields both self-awareness and mutual understanding, supplying individuals with the robust foundation needed for effective collaborative research. Led by Toolbox Project Facilitators, Workshop participants will engage in small group discussion and share respective views in response to a number of probing statements about science motivation, methodology, confirmation, objectivity, values, and reductionism.

Toolbox Questionnaire

<table>
<thead>
<tr>
<th>Philosophical domain and issue</th>
<th>Core question</th>
<th>Probing Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epistemology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Motivation | Does the principal value of research stem from its applicability for solving problems or its potential for making basic discoveries? | 1. Applied research is more important to me than basic research.
 Disagree 1 2 3 4 5
 Agree 5 4 3 2 1

2. Cross-disciplinary, collaborative research is better suited to addressing applied questions than basic questions.
 Disagree 1 2 3 4 5
 Agree 5 4 3 2 1

3. My research primarily addresses basic questions.
 Disagree 1 2 3 4 5
 Agree 5 4 3 2 1

4. The importance of our project stems from its applied aspects.
 Disagree 1 2 3 4 5
 Agree 5 4 3 2 1

5. The members of this team share similar views concerning aspects of basic and applied research.
 Disagree 1 2 3 4 5
 Agree 5 4 3 2 1 |
Collaboration Readiness

- On-line diagnostic survey for geographically distributed collaborations. The survey probes factors that may strengthen or weaken the collaboration. The Wizard provides both personal and project-level reports to help build successful and productive collaborative projects.

Collaboration & Team Science: A Field Guide

- Overall Goals & Vision
- Who Will Do What
- Sharing/Storing Reagents & Data
- Authorship, Credit
- Contingencies & Communicating
- Conflict of Interest

http://teamscience.nih.gov
Team Science Toolkit

An interactive website to help you support, conduct, and study team-based research.

Discover what resources are available...

"The Toolkit provides a wealth of resources for team scientists, including practical tools to use with your colleagues, such as team assessment guides and training resources."

—Holly Falk-Krzesinski, Vice President, Global Academic & Research Relations, Elsevier

Resources
- New Directions in Assessing Individuals and Groups
- Finding the Needle in the Haystack: A Public...
- The Individual and Scholarly Networks -- Virt...

Connections
- Blog
- Expert Directory
- Listserv

www.teamsiencetoolkit.cancer.gov
SciTS Listserv

- The **Science of Team Science (SciTS) listserv** facilitates conversation among individuals who are engaged in, studying, or managing team science, in the US and internationally. The listserv is maintained collaboratively by the SciTS Team at the National Cancer Institute, Division of Cancer Control and Population Sciences, Behavioral Research Program (http://cancercontrol.cancer.gov/brp/scienceteam) at the NIH.

- **TO SUBSCRIBE:** Send an email with a blank subject line to: listserv@list.nih.gov. The message body should read: subscribe SciTSlist [your full name]. Please do not include the brackets. For example, for Robin Smith to subscribe, the message would read: subscribe SciTSlist Robin Smith. You will receive a confirmation email.

- **TO POST TO THE LISTSERV:** Send an email to SciTSlist@list.nih.gov. Any subscriber may post to the list.

- **TO VIEW THE ARCHIVES:** To view the archives of all previous postings, go to: http://list.nih.gov/archives/SciTSlist.html

- **TO RECEIVE MESSAGES IN A DAILY DIGEST:** The default setting sends you each message as it is posted to the listserv. To receive one daily digest, instead, go to: http://list.nih.gov/cgi-bin/wa.exe?SUBED1=SciTSlist&A=1 and select “digest” as your subscription type.

- **TECHNICAL PROBLEMS WITH YOUR SUBSCRIPTION?** Contact the list administrator, Judy Kuan, at: kuanj@mail.nih.gov. Please be sure to state that your email is in reference to the SciTS listserv.
Levels of Collaboration Survey

- Measuring Collaboration Among Grant Partners
 - Evaluate collaboration and communication
 - Levels of Collaboration Scale
 - Visually display results of collaboration

Visualize Collaborative Relationships

Comparing (cumulative) number of publications of TD initiative with matched R01 projects from the tobacco field over 10-year period.

Centers initial lag in number of publications is eliminated around Project Year 4.

The Science of Team Science

Project Scope

The NRC will conduct a consensus study on the science of team science to recommend opportunities to enhance the effectiveness of collaborative research in science teams, research centers, and institutes. The science of team science is a new interdisciplinary field that empirically examines the processes by which large and small scientific teams, research centers, and institutes organize, communicate, and conduct research. It is concerned with understanding and managing circumstances that facilitate or hinder the effectiveness of collaborative research, including translational research. This includes understanding how teams connect and collaborate to achieve scientific breakthroughs that would not be attainable by either individual or simply additive efforts. The committee will consider factors such as team dynamics, team management, and institutional structures and policies that affect large and small science teams. Among the questions the committee will explore are:

- How do individual factors (e.g., openness to divergent ideas), influence team dynamics (e.g., cohesion), and how, in turn, do both individual factors and team dynamics influence the effectiveness and productivity of science teams?
- What factors at the team, center, or institute level (e.g., team size, team membership, geographic dispersion) influence the effectiveness of science teams?
- How do different management approaches and leadership styles influence the effectiveness of science teams? For example, different approaches to establishing work roles and routines and to the division of labor may influence team effectiveness.
- How do current tenure and promotion policies acknowledge and provide incentives to academic researchers who engage in team science?
- What factors influence the productivity and effectiveness of research organizations that conduct and support team and collaborative science, such as research centers and institutes? How do such organizational factors as human resource policies and practices and cyberinfrastructure affect team and collaborative science?
- What types of organizational structures, policies, practices and resources are needed to promote effective team science, in academic institutions, research centers, industry, and other settings?

Sponsored by the National Science Foundation and Elsevier, the project began in October, 2012. A report will be issued in late 2014 or early 2015.

Members

Dr. Nancy J. Cooke, Chair, Arizona State University
Dr. Roger Blandford, Department of Physics, Stanford University
Team Composition

Team of Experts ≠ Expert Team
The Winning Model

- Right mix of expertise and team-players
- Intervention/coaching to help use the collective expertise well

Share papers and collaborate
Whether you’re a research team, lab, or university class - sharing papers can be a challenge. Simply create public or private groups and start sharing documents instantly.

Communication made easy
Group members can see papers and folders you add to the group on their newsfeed. Keep up-to-date with your collaborators and make working together a walk in the park.

- See when others add documents
- Comment and like to start discussion
- Watch projects progress over time

All your ideas in real-time
Reviewing an article with your colleagues? When a group member adds a note, highlight or summary to a group document, the edit is visible to all the members of the group.
Mendeley SciTS Group

http://www.mendeley.com/groups/3556001/science-of-team-science-scits/
Science of Team Science (SciTS) Library

http://www.mendeley.com/groups/3556001/science-of-team-science-scits/
TEAM SCIENCE GRANTSMANSHIP

“Most of the work still to be done in science and the useful arts is precisely that which needs knowledge and cooperation of many scientists and disciplines. That is why it is necessary for scientists and technologists in different disciplines to meet and work together, even those in branches of knowledge which seem to have least relation and connection with one another.”

Team Science Proposal Development

- **Complex Initiatives**
 - Central organizing scientific theme or problem that can be addressed by science
 - Several collaborating investigators
 - Multiple projects closely related conducted through a coordinated, collaborative, and cross-disciplinary approach
 - Dispersed

- **Multiple Components**
 - Administration
 - Research
 - Pilot Projects
 - Capital Equipment
 - Cores
 - Education/Training
 - Clinical /Industrial Translation
 - Community Health
 - Outreach

- **Capacity Building Opportunities!**

NIH Common Fund Interdisciplinary Research Consortia
http://commonfund.nih.gov/interdisciplinary/
Collaboration Planning

1. Rationale for Team Approach & Configuration
2. Collaboration Readiness
3. Technological Readiness
4. Team Functioning
5. Communication & Coordination
6. Leadership, Management, & Administration
7. Conflict Prevention & Management
8. Training
9. Quality Improvement Activities
10. Budget & Resource Allocation

Grant Proposal Fodder

Team Development Activities

- Beyond the NIH Leadership or NSF Management Plan
- Identify and engage potential collaborators and assemble the team
- Develop partnerships, a collaborative research agenda, shared conceptual framework
- Consider how to expand the *number and type* of investigators working in the collaboration
- Promote mentoring, conflict management, cross-talk, integration
- Disseminate findings, sustain the collaboration
- Evaluate process and outcomes
ENHANCING COLLABORATION

“If more work is being done in teams and that work is of greater impact, then surely locating the right members for any team is more important than ever.”

Supporter of Team Science

- **National Reports**
 - NRC Science of Team Science consensus study and report
 - UK and Canadian Team Science initiatives
 - Canadian Team Science Initiative

- **Conferences**
 - Annual Science of Team Science (SciTS) Conference
 - University of California system annual Team Science Retreat (Elsevier Foundation)
The rich functionality of the Elsevier Research Intelligence (ERI) portfolio helps institutions quickly identify expert collaborators from across disciplines and institutions, facilitating more effective and productive partnerships.

- SciVal
- Pure Experts Portal
- Analytical Services

Powered by data from Scopus® and the semantic Elsevier Fingerprint Engine™, the ERI portfolio allows institutions to:

- Identify current and discover potential collaborators
- Provide data-driven analysis of collaborative behavior and impact
- Deliver insight into how institutions can facilitate more powerful collaborations
Holly J. Falk-Krzesinski, PhD

Vice President, Strategic Alliances
Global Academic Relations Elsevier Chicago, IL, USA

h.falk-krzesinski@elsevier.com
http://www.linkedin.com/in/hollyfk
@hfalk1
+1 847-848-2953
This work by Holly J. Falk-Krzesinski, PhD is licensed to Health Research Alliance under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) License.

You are free to:

- Share — copy and redistribute the material in any medium or format
- Under the following terms:
 - Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 - NonCommercial — You may not use the material for commercial purposes.
 - NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
 - No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
 - The licensor cannot revoke these freedoms as long as you follow the license terms.

Notices:

- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.