Using simulations to explore treatment strategies in high throughput

Paul Macklin, Ph.D.

Intelligent Systems Engineering Indiana University

November 16, 2018

ψ

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Cancer is a systems problem

Interconnected systems and processes:

- Single-cell behaviors
- Cell-cell communication
- Physics-imposed constraints (e.g., diffusion)
- Systems of systems (e.g., immune system)

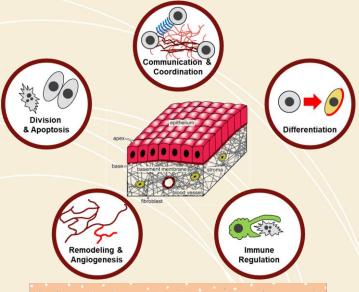
In cancer (and diseases), these systems become dysregulated.

Treatments target parts of these systems.

As with any complex system, changing one part can have surprising effects!

Modeling can help **understand** this system. This is **multicellular systems biology**.

If we can **control** these systems, we've arrived at **multicellular systems engineering**.



Metastatic seeding in 1 cm² of liver parenchyma

MathCancer.org 💕 @MathCancer

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Analogy: multicellular biology as a play

- The microenvironment is the stage.
- ▶ The cells are the actors.
- The cells follow their own scripts.

► **BUT**:

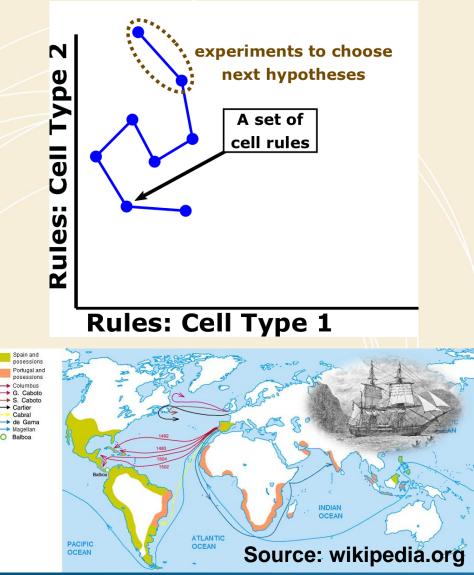
- The scripts change based on the stage. (ME-dependent phenotype)
- The actors' dialog is critical. (cell-cell communication)
- The actors can tear up and remodel the stage. (tissue remodeling)
- The actors can ignore their scripts and ad lib. (Mutations, evolution)

It's our job as scientists to figure out each actor's script by watching the play.

Clinicians and engineers want to rewrite the script.

Exploring the Space of Ideas

- Observations and intuition drive hypotheses:
 - What are the rules that drive the system's behavior?
 - What therapeutic strategies can disrupt this?
- A hypothesis set is a point in a high-dimensional hypothesis space
- Experiments help us trace a path through hypothesis space.
 - If cells don't behave the way we expect, adjust our rules.
 - If the therapy didn't work as expected, adjust our strategy.
- This exploration leads to discovery



Macklin lab <u>MathCancer.org</u>

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Simulations can explore space faster

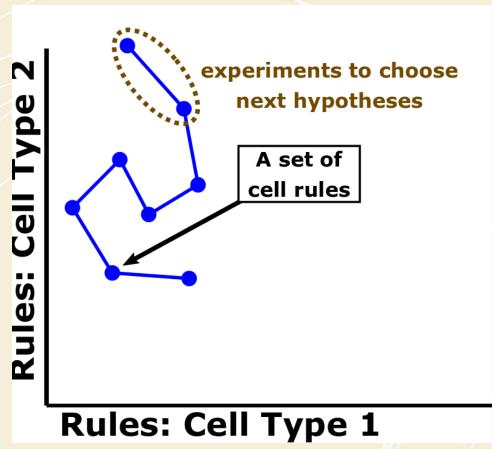
- Experiments can be expensive:
 - Fixed costs:
 - Cutting-edge instruments
 - Lab facilities
 - Expensive marginal costs:
 - Days or weeks to run
 - Lab personnel
 - Lab supplies
- Simulations have different economics
 - Fixed costs:
 - Software and model development
 - Computing hardware

INDIANA UNIVERSITY

- Cheaper marginal costs:
 - Seconds, hours, or days to run
 - Single person can run 100s of experiments

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

• Supplies = disk space, electricity



Macklin lab

MathCancer.org 😏 @MathCancer

Our simulation toolbox

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

BioFVM: Simulating 3-D biotransport

Design goal: Simulate multiple diffusing substrates in 3D with desktops or single HTC/HPC nodes

Typical use: pO_2 , glucose, metabolic waste, signaling factors, and a drug, on 10 mm³ at 20 µm resolution

Features:

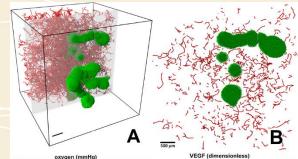
- Off-lattice cell secretion and uptake
- 2nd-order accurate (space), 1st-order accurate (time), numerically stable

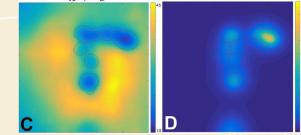
Method:

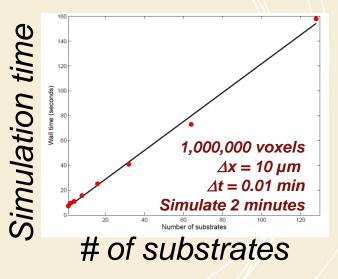
- Operator splitting, LOD, customized Thomas solvers, etc.
- Standard C++11, cross-platform
- OpenMP parallelization
- ► O(n) cost scaling in # substrates, # voxels
- Easy to simulate 5-10 substrates on 10⁶ voxels

Reference: Ghaffarizadeh et al., Bioinformatics (2016)

DOI: 10.1093/bioinformatics/btv730







UNDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

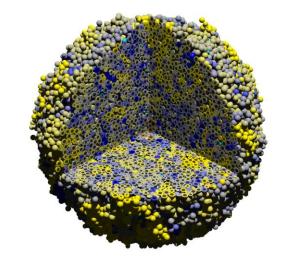
PhysiCell: A multicellular simulator

Design goal: Simulate 10⁶ or more cells in 3D on desktops or single HTC/HPC nodes

Features:

- Off-lattice cell positions
- Mechanics-based cell movement
- Cell processes (cycling, motility, ...)
- Signal-dependent phenotype
- Can dynamically attach custom data and functions on a cell-by-cell basis
- Deployed from Raspberry Pi to Crays <u>Method:</u>
- Standard C++11, cross-platform
- OpenMP parallelization
- O(n) cost scaling in # cells

Reference: Ghaffarizadeh et al., *PLoS Comput. Biol.* (2018) **DOI:** <u>10.1371/journal.pcbi.1005991</u> Current time: 7 days, 0 hours, and 0.00 minutes 53916 cells



Competition in a 3-D tumor

[View on YouTube (8K)]

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

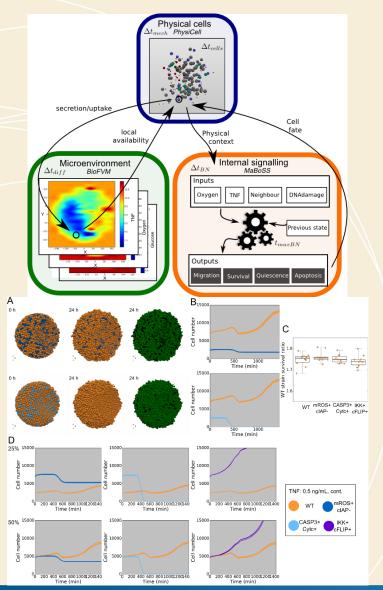
Macklin lab
<u>MathCan</u>cer.org 🈏 @MathCancer

Adding cell signaling ...

- First major PhysiCell functionality contributed by an outside group!
- Work lead by Gaelle Letort, with Montagud, Stoll, Barillot, Zinovyev, Calzone (Institut Curie)

PhysiCell (multicellular simulation framework)
+ MaBoSS (Boolean signaling network framework)
= PhysiBoSS [DOI: <u>10.1093/bioinformatics/bty766]</u>

- Add a MaBoSS signaling network (with independent parameters and state) to each PhysiCell agent
- This is a key strength of open source!
 - Other groups can freely adapt and extend the work, then share the improvements with all.
- This is also a win for preprints!
 - Letort found preprint ~1 year before publication
 - PhysiBoSS preprint online before PhysiCell paper
 - Preprint also kicked off dialog with GigaScience



Macklin lab

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

MathCancer.org 😏 @MathCancer

Example 1: Design rules for synthetic cell colonies

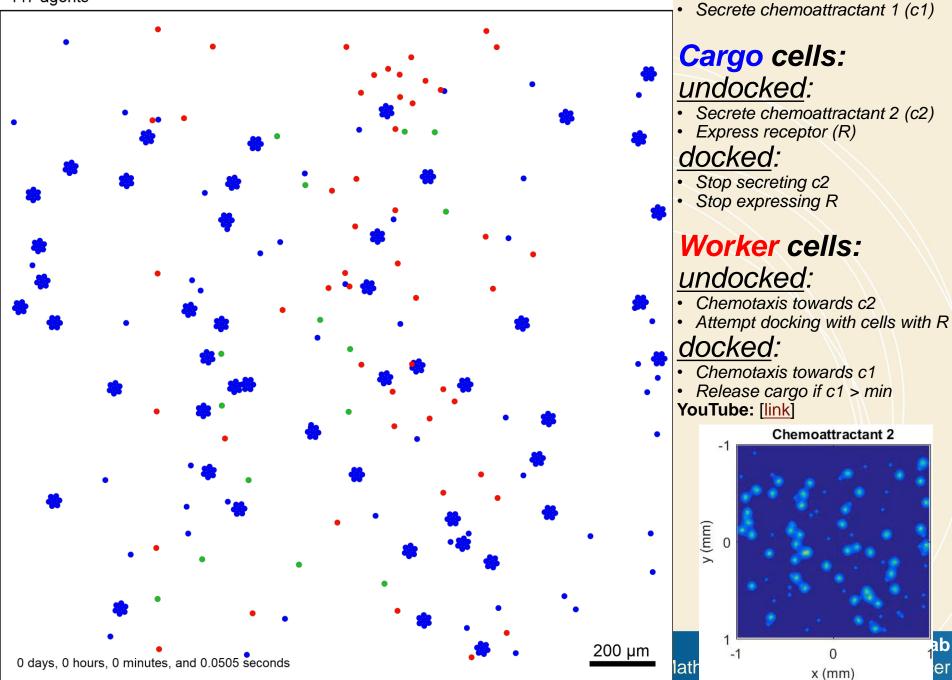
INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Synthetic multicellular systems engineering

- ► Suppose we have a handful of phenotypic "programs" we can implement:
 - Secretion of a chemical signal
 - Chemotaxis towards a chemical signal
 - Switching adhesion on or off
 - Switching secretion on or off
 - Switching between directed and random motility
- What happens if we "program" our cells with these rules? (e.g., CRISPR-Cas9, opto-genetic switches, mRNAs, etc.)
- ► Can we use these to deliver a cargo? Could we delivery a therapeutic?
- ► We can use PhysiCell to test our design choices!

Our goal: Use PhysiCell for high-throughput testing of biorobot designs!

Current time: 0 days, 0 hours, and 0.00 minutes, z = 0.00 µm 447 agents



Director cells:

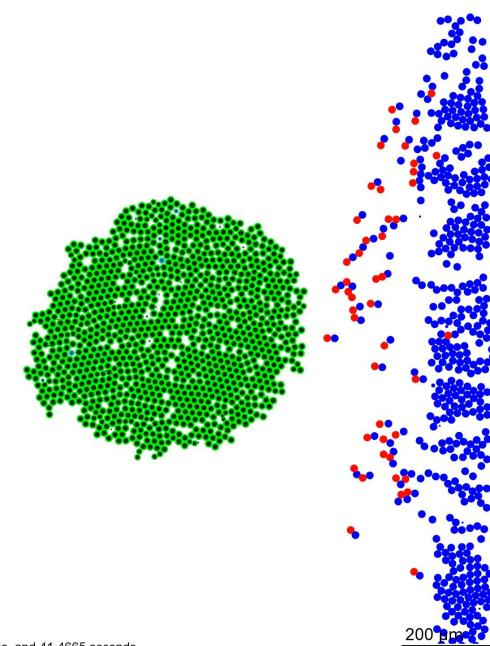
ab

er

If we could "program" cells this way, we could envision very Sci-Fi therapies ...

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Current time: 7 days, 5 hours, and 51.00 minutes, $z = 0.00 \ \mu m$ 1613 agents



Cancer cells:

- Consume oxygen
- Are damaged by the therapeutic (darker = more damaged)
- Can repair their damage
- Apoptose proportionally to their current damage

Cargo cells:

undocked:

- Secrete chemoattractant (c)
- Express receptor (R)

docked:

- Stop secreting c
- Stop expressing R
- delivered:
- Secrete the drug

Worker cells:

undocked:

- Chemotaxis towards c
- Attempt docking with cells with R docked:
- Chemotaxis towards hypoxic zones (along ∇pO₂)

YouTube: [link]

Example 2: Cancer cell response to hypoxic stress (low pO₂)

W INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Hypoxia in breast cancer

Most breast cancers are hypoxic

- normal breast: pO₂ ~ 65 mmHg
- breast cancer: pO₂ ~ 10 mmHg
- (Tatum et al. Int. J. Radiat. Biol. 2006)

Hypoxia drives phenotype changes

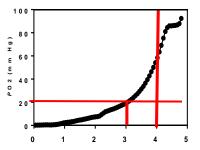
- Hypoxic responses at ~8-10 mmHg
- transformation into stem-like cells
- Increased motility
- Increased ECM remodeling
- Increased glycolysis
- Increased acidosis

INDIANA UNIVERSITY

- (maybe) decreased adhesion
- VEGF secretion (+angiogenesis)

hypoxic

Hypoxic breast tumor (via hypoxyprobe) **Source:** Gilkes lab, Johns Hopkins



Radial pO₂ profile (optical measurement) **Source:** Gilkes lab, Johns Hopkins

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

What are the rules of hypoxic cell motility?

How persistent is their response to hypoxic stress?

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

No phenotypic persistence

889 agents

- ► GFP+ cells:
 - If pO₂ < 10 mmHg:</p>
 - Same division rates
 - Speed: 0.25 µm / min
 - 50% bias along ∇pO_2
 - If pO₂ > 10 mmHg
 - Set speed = 0.0

Current time: 0 days, 0 hours, and 0.00 minutes, z = 0.00 µm

Matching observations:

- [] GFP+ cells reach edge
- [x] Necrotic core (a bit)
- [] GFP+ microcolonies

0 days, 0 hours, 0 minutes, and 0.1210 seconds

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

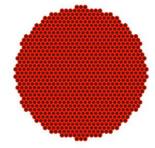
Phenotypic permanence

- ▶ GFP+ cells:
 - If pO₂ < 10 mmHg:</p>
 - Same division rates
 - Speed: 0.25 µm / min
 - 50% bias along ∇pO_2
 - If pO₂ > 10 mmHg
 - No change

Matching observations:

- [X] GFP+ cells reach edge
- [] Necrotic core
- [] GFP+ microcolonies

Current time: 0 days, 0 hours, and 0.00 minutes, z = 0.00 μm 889 agents



0 days, 0 hours, 0 minutes, and 0.1210 seconds

200 µm

Macklin lab

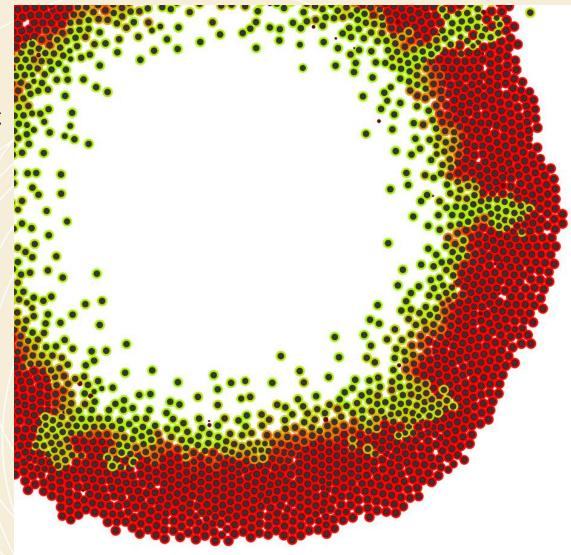
MathCancer.org 😏 @MathCancer

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Novel prediction: hypoxic plumes

- It *looks like* collective motion, but it's purely mechanics
 - Cells are motile
 - If one motile cell finds a gap, it's easier for others to exploit it
 - A "plume" of hypoxic cells grows
- Model suggests a therapeutic strategy:
 - Make hypoxic response less persistent to reduce escape.

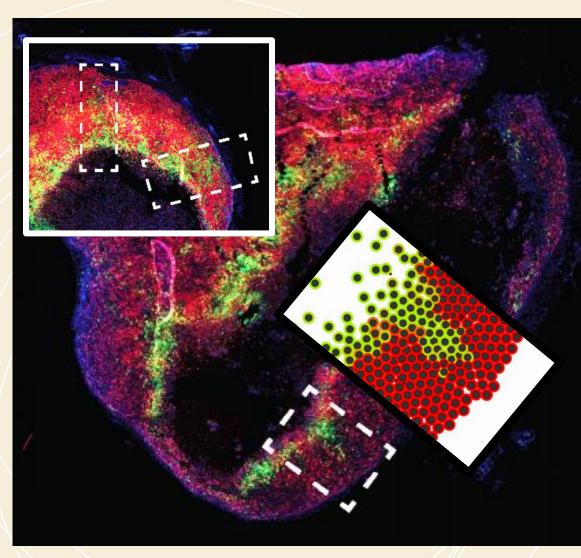


INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Novel prediction: hypoxic plumes

- It *looks like* collective motion, but it's purely mechanics
 - Cells are motile
 - If one motile cell finds a gap, it's easier for others to exploit it
 - A "plume" of hypoxic cells grows
- Model suggests a therapeutic strategy:
 - Make hypoxic response less persistent to reduce escape.
- They're observed in vivo
 - MDA-MB-231 in mice at ~20 days
 - Source: Gilkes lab (JHU)

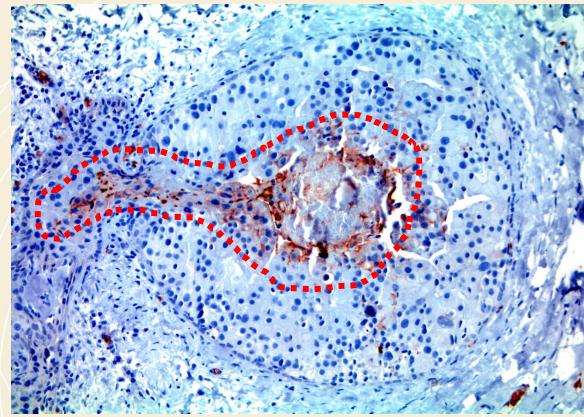


SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Novel prediction: hypoxic plumes

- ▶ It *looks like* collective motion, but it's purely mechanics
 - Cells are motile
 - If one motile cell finds a gap, it's easier for others to exploit it
 - A "plume" of hypoxic cells grows
- Model suggests a therapeutic strategy:
 - Make hypoxic response less persistent to reduce escape.
- They're observed in vivo
 - MDA-MB-231 in mice at ~20 days
 - Source: Gilkes lab (JHU)
- Also observed clinically!
 - DCIS pathology (GLUT1)
 - Source: Bob Gatenby

INDIANA UNIVERSITY



SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Example 3: Immunosurveillance

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

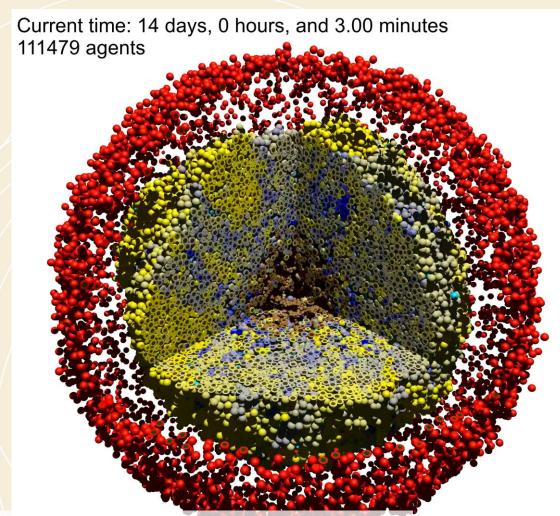
Simple model of cancer immune response

Heterogeneous tumor cells:

- Cycle entry rate scales with O₂
- ► Cells necrose in very low O₂
- Yellow cells are most proliferative; blue are least
- Yellow cells are most immunogenic (simplified model of MHC)

Immune cells (red):

- Biased random walk towards tumor
- Test for contact with cells
- Form adhesion
- Attempt to induce apoptosis (e.g., via FAS receptor), with rate dependent on immunogenicity
- Eventually detach from cell, continue search



YouTube (4K): <u>https://www.youtube.com/watch?v=nJ2urSm4ilU</u> Paper: <u>https://doi.org/10.1101/088773</u> Immune attack on a 3-D tumor

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Scaling up

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Scaling up from demo to science ...

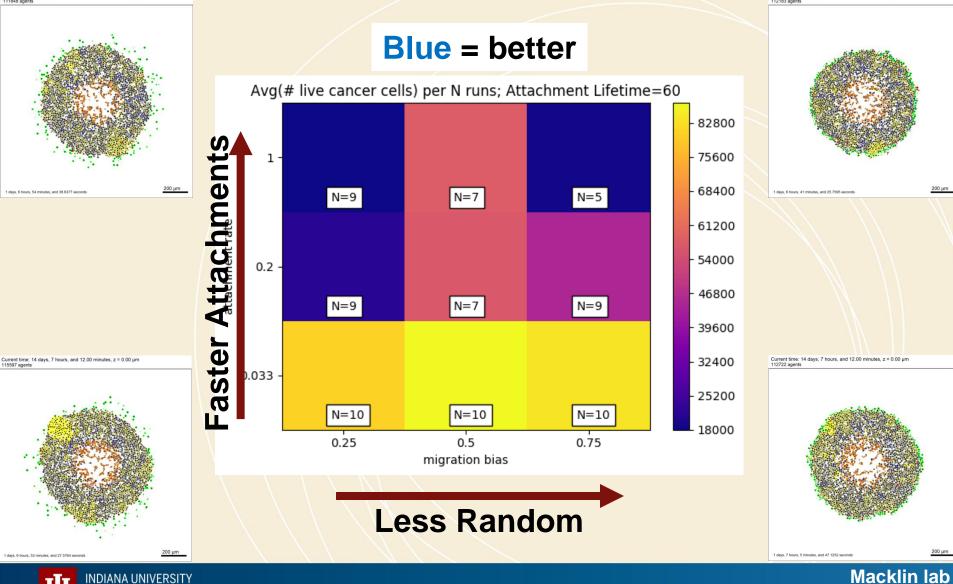
- Early insight: immune cell homing is non-intuitive
- Key immune cell parameters:
 - Random motility bias (biased random walk):
 - How much randomness to we allow in motility?
 - Immune cell attachment rate:
 - How quickly do immune cells form new adhesions, instead of wandering?
 - Immune cell attachment lifetime:
 - How long do immune cells try to kill before giving up?
- Combinatorics:
 - 3 parameters, 3 levels per parameter
 - 3³ = 27 simulations
- Simulations are stochastic! Need at least 10x replicates for each condition!
 - 3³ x 10 = 270 simulations
 - 2 days per simulation → 1.5 years of computing!!

We need high-throughput computing to do the science!

INDIANA UNIVERSITY

Varied: migration bias & attachment rate

Current time: 14 days, 7 hours, and 12.00 minutes, z = 0.00 µn 111848 agents Current time: 14 days, 7 hours, and 12.00 minutes, z = 0.00 µm

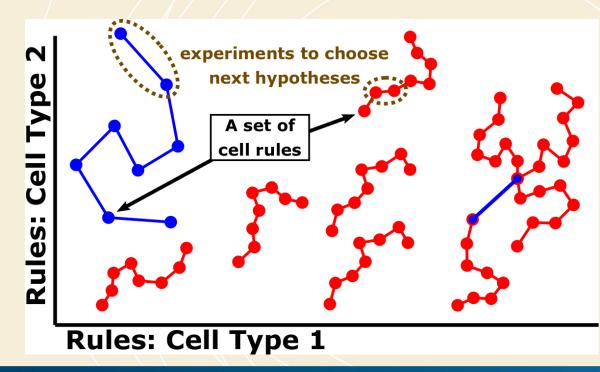


SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

MathCancer.org 😏 @MathCancer

High-throughput exploration

- Run many copies of the model at once with high-throughput computing (HTC)
 - Explore more of the space of treatment ideas at once
 - More likely to discover a winning strategy.
- Next: accelerate models runs with AI
- Next: Use reinforcement learning to guide our exploration

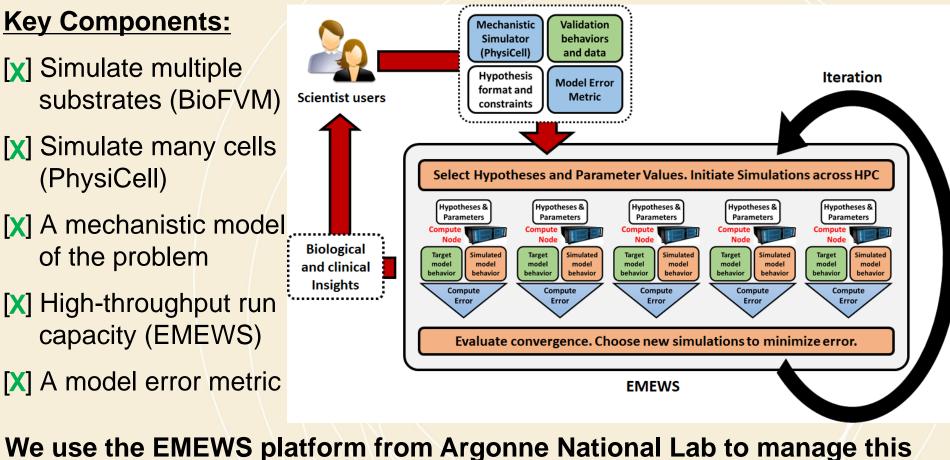


INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Discovery as optimization

How do we reframe discovery as an optimization problem?



adaptive workflow. BMC Bioinformatics (2018, accepted), bioRxiv 196709

Macklin lab

MathCancer.org 😏 @MathCancer

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Challenges I

► Scientific:

- How do we compare simulation behavior to experiments?
 - Next generation: machine vision to "see" similarity
- How do we connect single-cell behaviors with molecular biology and drugs?
 - Simulation models explore the dynamics of therapy strategies
 - Machine learning finds the connections between molecules and phenotype
- How do we "translate" from short-ish simulations to clinical endpoints?
 - Need surrogate, mid-term markers that correlate with long-term clinical outcome
- Combine strengths of simulations (test *dynamics* of strategies) with machine learning (find the connections between molecular biology and phenotype)

Computational / Technical:

- How do we improve speed of simulations?
 - GPU computing, Hybrid OpenMP+MPI, deep neural networks to approximate models

Challenges II

Supporting exploration

- Funding agencies favor hypothesis-driven projects
- Exploration is viewed as a "fishing expedition" (pejoratively)
- Key discoveries are serendipitous, found in exploration or "failed" experiments.
- Would the NIH or NSF have funded Darwin's "fishing expedition"?
 - Situation is improving today for consortia, but less so for investigator-driven work.

Partnering with industry

- How do we sort out licensing and IP?
 - Community should "own" the public goods the core libraries
 - Industry funders should "own" the specific applications the cancer simulators they pay for.
 - Pharma shouldn't insist on "owning" the IP to the entire software stack. Just the IP they create with the software.

Macklin lab

MathCancer.org 💕 @MathCancer

- A playwright gets copyright for her plays, not the office suite she used to write it.
- How can we incentivize industry
 - to take advantage of "free" software resources?
 - to share data for mutual benefit?
 - to "pay" for free by contributing to the software?

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Challenges III

Sustainable software:

- Creating and maintaining polished and tested software
- Writing documentation
- Training and supporting new users
- Grant agencies tend to fund software applications but not the software
 - They fund cancer projects that use PhysiCell, but it takes multiple grants to support developers. (20% on NIH grant 1, 15% on NSF grant 2,)
- University bureaucracy makes it difficult, too!
 - Can users buy \$500 of support? (No! We have to negotiate a subcontract! Ugh.)
 - Can users donate to the lab? (Not easily!)
 - Can I use crowdsourcing like Patreon? (Not sure! Each office says to ask another office.)

Macklin lab

MathCancer.org 😏 @MathCancer

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Acknowledgements: Partners

- Breast cancer hypoxia: Daniele Gilkes lab (Johns Hopkins)
- Breast cancer invasion: Andrew Ewald lab (Johns Hopkins)
- Colon cancer metabolism: Stacey Finley (USC)
- Colon cancer organoids: Shannon Mumenthaler (USC)
- PhysiCell: Randy Heiland (IU)
 - alumni: Samuel H. Friedman (OKSI), Ahmadreza Ghaffarizadeh (USC)
- IU PhD students: John Metzcar (hypoxia, invasion), Yafei Wang (liver metastases, nanotherapy), Furkan Kurtoglu (multicellular metabolism), Aneequa Sundus (cyanobacteria, synthetic multicellular systems)
- IU Undergraduates:
 - Metastasis: B. Fischer, D. Murphy, K. Konstantinopoulos, B. Duggan
 - Nanotherapy: T. Mahjan
 - Jupyter GUIs: E. Bower, D. Mishler, T. Zhang
 - PhysiCell tech: E. Freeman, G. Lahman
- HTC via EMEWS: Jonathan Ozik, Nicholson Collier, Justin Wozniak, Charles Macal (Argonne National Lab), Chase Cockrell, Gary An (U. Chicago)

Acknowledgements: Funders

► NIH:

- NIH CSBC U01 (1U01CA232137), Pls Finley / Macklin / Mumenthaler
- Provocative Questions grant (1R01CA180149), Pls Agus / Atala / Soker
- NIH PS-OC center grant (5U54CA143907), PIs Agus / Hillis
- High-End instrumentation grant (1S10OD018495-01), PI Foster
- HuBMAP CCF contract (OT2 OD026671), PI Borner

► NSF:

- Engineered nanoBIO Hub (1720625), PI Fox. Co-PIs Douglas, Glazier, Macklin, Jadhao
- Cyanobacteria / Synthetic Biology (1818187), PI Kehoe, Co-PI Macklin
- Breast Cancer Research Foundation & JKTGF, PI Macklin
 - projects with PIs Agus, Gilkes, Peyton, Ewald, Newton, Bader

NDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Thank you!

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING