## High-Value Data Stimulates Research

Health Research Alliance Open Science and Data Sharing Session



Tony Kerlavage, PhD Director, Center for Biomedical Informatics and Information Technology

20 April 2022

### Outline

- 1. Impact of Data Sharing
- 2. Evolution of Data Sharing Policies
- 3. National Cancer Data Ecosystem
- 4. Challenges & Opportunities

# Impact of Data Sharing

# What **IS** Data Sharing?

Data Sharing – The practice of making research data & metadata available for use by the broader community

# Benefits **OF** Data Sharing

- Stimulate innovation and discovery: Secondary use of data leads to new discoveries (knowledge, products & procedures)
- Ensure replication of results
- Ensure transparency & openness the scientific method



# Scientific Data Lifecycle: Keys to Impactful Discovery



#### **Critical Questions to Answer**

Programs that define therapeutic needs and essential scientific gaps to be filled using structured datasets.

#### **Policies to Promote Broad Use**

Implementation of aggressive data management, sharing and access policies that ensure rapid, free and immediate access to all types of data.

#### Infrastructure to Support FAIR Principles

Technology platforms and tools that employ standards to make data findable, accessible, interoperable and reusable.

## Framingham Study: Success in Data Collection Over Time



## The Cancer Genome Atlas: Success in Open Team Science

#### TCGA BY THE NUMBERS



To put this into perspective, 1 petabyte of data is equal to





...based on paired tumor and normal tissue sets collected from



#### TCGA RESULTS & FINDINGS



#### THE TEAM



#### The Genomic Data Commons (GDC) houses TCGA and other NCI-generated data sets for scientists to access from anywhere. The GDC also has many expanded capabilities that will allow researchers to answer more clinically

increased ease.

relevant questions with

WHAT'S NEXT?

\*TCGA's analysis of stomach cancer revealed that it is not a single disease, but a disease composed of four subtypes, including a new subtype characterized by infection with Epstein-Barr virus.

www.cancer.gov/ccg

#### Number of Publications Using TCGA Data



#### NATIONAL CANCER INSTITUTE

## The Cancer Moonshot: Success in Mission-Driven Science

# 

#### MISSION

Dramatically accelerate efforts to prevent, diagnose, and treat cancer—to achieve a decade's worth of progress in 5 years

#### WHY NOW

New scientific understanding and vast amounts of rich data just waiting to be transformed into solutions

Immense science and technological capabilities positioning us for a quantum leap

A shared national commitment to harness the intellectual creativity and innovation of the American people

#### The Cancer Moonshot unites the entire cancer ecosystem to catalyze innovation, accelerate progress, and continuously disseminate and act on new knowledge. Together, we can end cancer as we know it.

Ownint

DISSEMINA

PATIENT

.....

VATE SECTO

 
 New and improved treatment options
 Setter information for making medical decisions

 More sensitive screening measures
 Increased tools for community care providers

 Improved use of effective prevention strategies
 Increased tools for community care providers

 Improved use of effective prevention strategies
 Improved use of share health information

The Promise for Patients

To learn more, please visit WH.gov/cancermoonshot



#### **Moonshot Publications by Year**





# Evolution of Data Sharing Policy

### **Key NIH & NCI Data Sharing Policies**

NIH Final Policy for Data Management & Sharing





NATIONAL CANCER INSTITUTE Center for Biomedical Informatics & Information Technology Investigators must share any information necessary to understand, develop or reproduce published research (raw data, statistical methods, tools, source code)

# NIH Genomic Data Sharing (GDS) Policy

Set expectations for making genomics data available in a timely fashion to the research community



### **Policy Expectations**

- Genomics data must be shared broadly with research community for mining & discovery
- Applies to human & non-human data; all types of funding w/o \$ threshold: extra/intramural grants, contracts, OTAs
- Timing expectations for release (<9 months for raw data; publication for analyzed results)



### **Successful Programs**

- Genome-wide association studies (GWAS) – multiple disease areas
- The Cancer Genome Atlas (NCI) tumor/matched normal samples from 33 cancers
- **TOPMed** (NHLBI) whole genome sequences on ~186K patients in heart, lung, blood & sleep disorders
- **GTEx** (Genotype-Tissue Expression project) explore genetic variants across human tissue



- Platforms to share individual level, potentially identifiable data (controlled-access; DAC approval)
- Consent defines data use
- Data de-identified to protect patient privacy & confidentiality
- Make summarized, non-identifiable data broadly available (open access)
- dbGaP, SRA, GDC, BioData Catalyst, AnVIL

# **Clinical Trials Access Policy**

Ensure timely, public availability of results from NCI-supported clinical trials



### **Policy Expectations**

- Share final results of clinical trials (timely, comprehensive): registration 21 days after 1<sup>st</sup> enrollment, results available 12 months
- NCI-supported clinical trials (intra/ extramural grants/contracts) of:
   FDA-reg drug, biologics, devices
   Pediatric post-market surveillance studies (devices under FD&C Act).
- Submit study reports to accessible registries



### **Successful Programs**

- Molecular Analysis for Therapy Choice Trials (MATCH; NCI) precision oncology for relapsed cancer patients
- Prevention and Early Treatment of Acute Lung Injury (PETAL; NHLBI) prevent or provide early treatment for acute respiratory distress syndrome
- Accelerating Covid-19 Therapeutic Interventions & Vaccines (ACTIV; NCATS) - vaccine and therapy trials



- Data available <1 yr Trial's Primary Completion Date
- Platforms to share summary level data of trials results: Clinicaltrials.gov, CTRP, NCTN Archive
- Some individual level data from subjects available (tissues samples collected during clinical trials):
- NCI TARGET (GDC), Kids First (DRC), PCGC (BDC)
- o Covid-19 (N3C, RADx, IMPORT)

# **Moonshot (HEAL) Public Access & Data Sharing Policy**

Make publications & data immediately & broadly available to the public



### **Policy Expectations**

- Every funded project (intra/ extramural grants, contracts) must submit public access and data sharing plan
- Plan becomes term & condition of award (NoA)/ contract deliverable
- Publications & data must be made available to public freely & immediately with no embargo (open access)



#### **Successful Programs**

- Human Tumor Atlas Network (HTAN)
- My Pediatric And Rare Tumor Network (MyPART)
- Moonshot Biobank / Direct Patient Engagement Network
- Cancer Research Data Commons (CRDC)
- NIH HEAL Initiative (scientific solutions for opioid crisis) - employed same policy



- Share data to extent feasible, widely and immediately
- Preferably available through NCI or NIH data repository (CRDC,NCBI)
- Open-access attribution license (Creative Commons)
- Creation of a national cancer ecosystem; cloud-based, tools & interfaces for all types of data uses

# **Final NIH Policy on Data Management & Sharing**

Make publications & data immediately & broadly available to the public



### **Policy Expectations**

- Every funded project (intra/ extramural grants, contracts) must submit data management & sharing plan
   Plan becomes term & condition of award (NoA)/ contract deliverable
- Good data management (sharing & preservation; FAIR data principles)
- Timely sharing of scientific data: as soon as possible and by publication
- Takes effect January 25, 2023



### Foundational Initiatives

- NIH HEAL Initiative
- NCI Cancer Moonshot
- COVID data efforts
- NIH All of Us
- NCI Childhood Cancer Data Initiative

https://sharing.nih.gov/



- Share data to extent feasible, widely and immediately
- Preferably available through NCI or NIH data repository or ecosystem (CRDC,NCBI)
- Connect research, clinical and public health data for maximal benefit to science & participants
   N3C, RADx, NCPI, CCDI

## National Cancer Data Ecosystem

## Scientific Data Lifecycle & the CRDC



# National Cancer Data Ecosystem

<u>Overall goal:</u> "Enable all participants across the cancer research and care continuum to contribute, access, combine and analyze diverse data that will enable new discoveries and lead to lowering the burden of cancer."

### **Overarching goals**

- Accelerate progress in cancer, including prevention & screening
  - From cutting edge basic research to wider uptake of standard of care
- Encourage greater cooperation and collaboration
  - Within and between academia, government, and private sector
- Enhance data sharing

### Recommendations

- Build a National Cancer Data Ecosystem
  - Enhanced cloud-computing platforms
  - Services that link disparate information, including clinical, image, and molecular data
  - Essential underlying data science infrastructure, standards, methods, and portals for the Cancer Data Ecosystem

# National Data Ecosystem: Integrating Cancer Research



The Cancer Research Data Commons (CRDC)

## **CRDC: Statistics & Impact**

| CRDC Repositories                                                                     |                                                 | NCI Cloud Resources                                                             |
|---------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------|
| Genomic Data Commons65 K+2.9 PB+ data~2 PB datausers/month85,000+ casesdownload/month |                                                 | 12,000+2,300+registered usersof compute                                         |
| Proteomic DC<br>29 TB data<br>1 M+ peptides                                           | Imaging DC<br>20 TB data<br>400 K+ image series | <b>1,800+</b> public <b>8,000+</b> user-<br>tools & workflows created workflows |
| Cancer Data Service                                                                   | Integrated Canine DC                            | Across the CRDC                                                                 |
| 80 TB data<br>1.3 PB coming soon                                                      | 25 TB data<br>490+ cases                        | 200+ Scientific Publications<br>300+ Studies/Collections Released               |

### **Childhood Cancer Data Initiative**



### Using data to achieve the goals of CCDI

Piece it together: CCDI is completing the puzzle to learn from and help heal children, teens, and young adults with cancer.

#### Build a strong base: Progress requires data from many sources that is connected and easy to access.

#### Make data easy to use: More thoughtful tools for analyzing data will help answer important questions.

Assemble better data:

Complete data sets are needed to understand each type of cancer.

#### Improve treatments:

Data is the foundation that informs new treatments and improves lives faster.



## NCPI: NIH Cloud Platforms for Interoperability Connecting with a Greater Data Ecosystem



# Challenges & Opportunities



# **Challenges for Data Driven Research**

### **Inconsistent Sharing Policies**

- No universal standard
- Liberal exceptions
- Government or institutional prohibitions
- Discretion of scientist

### **Data Complexity**

- Difficult to find and analyze multiple data types from multiple data sources
  - Basic research
  - Model systems
  - Clinical trials
  - Population-level studies

#### **User Skills and Tools**

- Most researchers are not bioinformaticians or data scientists
- Skill levels for data handling and data analysis varies
- Availability of analysis tools varies on platforms

### Data Storage and Usage

- Data often stored in separate data repositories for download
- Use of data or combining datasets may require multiple downloads, moving data, or multiple DUAs







### Setting Expectations for Researchers Prior to Funding

- Guide researchers to define up front what data will have the most value and build this into the study
- Think like a data user rather than a data generator
- Take the lead and push for a data continuum work towards highvalue data sets
- Encourage open and broad usage by the largest possible community
- Define the repository ahead of time; use existing whenever possible
- Pursue data federation, not consolidation
- Set expectations on timing of data availability

# How can the NIH help you today?

### NCI Data Science

- https://datascience.cancer.gov
- NCI Office of Data Sharing
  - https://datascience.cancer.gov/data-sharing
- NIH Data Sharing Website (just launched)
  - https://sharing.nih.gov
- NIH Office of Data Science Strategy
  - https://datascience.nih.gov/about/odss
- National Center for Biotechnology Information
  - https://www.ncbi.nlm.nih.gov
- NIH Generalist Repositories
  - https://www.nlm.nih.gov/NIHbmic/generalist\_repositori es.html



### Thank You!



www.cancer.gov/espanol

www.cancer.gov